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Abstract. A formalism which combines Gorkov’s Green function description of the super- 
conducting state and a surface Green function method is proposed to calculate tunnelling 
currents in normal metal-superconductor junctions. The method allows a straightforward 
calculation of the reflection and transmission matrices, among other physical magnitudes of 
interest. A simple example (at T = 0), based upon elementary BCS theory, is carried out in 
detail. The results are in full agreement with previous analyses on this system, which used 
the matchingof wavefunctions at the interface. The formalism is compared with other Green 
function approaches to the present problem. 

1. Introduction 

In the last 15 years, tunnelling has been widely used to investigate the properties of 
superconducting materials [ 11. In particular, a great deal of experimental and theoretical 
work has been devoted to the understanding and utilisation of the properties of normal 
metal-superconductor (N-S) junctions [l, 21. This interest has recently grown with the 
invention of the scanning tunnelling microscope [3] and its applications to the study of 
global and local properties of superconducting materials [4]. Lately, the discovery of 
high-temperature superconductors [5] has prompted a strong revival of the research in 
the whole field of superconductivity. 

Despite these developments, a full calculation of the tunnelling currents in N-S 
junctions has only been carried out rather recently [2,6].  Previous analyses of the 
problem used the simplest semiconductor description of the superconducting ground 
state [7], which, as discussed in [2], does not account for the temperature-independent 
currents, at energies in the superconducting gap. Although this is the most important 
failure of the semiconductor model [6], it also masks most of the physics which charac- 
terise the junction [2]. 

The exact solution of tunnelling at the N-S interface was achieved through matching 
at the interface of the superconductor wavefunctions (as given by the Bogoliubov 
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equations [SI) to the normal metal wavefunctions. Although this procedure is in principle 
straightforward, it already reveals the intriguing characteristics of the system, and its 
extension to more complicated problems is rather intricate. The purpose of the present 
paper is to show how the Green function formulation of the microscopic theory of 
superconductivity proposed by Gorkov [9] can be extended to treat the present problem. 
Gorkov’s [9] approach has been recognised as one of the most useful in the investigation 
of the bulk properties of superconductors in the presence of magnetic fields or at 
finite temperatures [lo, 111. To generalise Gorkov’s formalism to problems without 
translational invariance, such as surfaces or interfaces, we use the surface Green function 
(SGF) method developed in [12, 131. Combining both formalisms, we are able to solve 
the matching of Green functions at the interface and, therefore, to obtain the full Green 
function of the system [12]. The SGF method proposed by Garcia-Moliner and Rubio 
[ 121 has already been used to investigate the properties of metal [ 141 and semiconductor 
[15] surfaces, and their interfaces; in the present paper we shall show that it can also 
handle junctions in which a superconductor material is involved. Although the resultant 
formalism is rather similar to that proposed by Arnold [ 161, it is formally more simple. 
We shall describe the general procedure and illustrate its use by means of a calculation 
of the reflection and transmission coefficients for the N-S junction, a system which has 
been thoroughly investigated by means of the matching of wavefunctions at the interface 
[2,61. 

2. Green function formalism 

2.1. Microscopic theory of superconductivity 

Gorkov [9] reformulated the microscopic theory of superconductivity, introduced by 
Bardeen, Cooper and Schrieffer [17], in terms of Green functions. This formalism 
naturally includes finite temperatures, in terms of temperature Green functions, and 
can be easily extended to investigate the properties of superconductors in the presence 
of magnetic fields. In summarising the main features of the formalism, we follow the 
approach suggested in [18,19] and restrict ourselves to the case of zero temperatures. 
We define a 2 x 2 matrix Green function in terms of the following two-component field 
operator: 

where qko(r, t )  are the standard field operators for particles with a given z component 
of the spin and wavenumber k .  Then the matrix Green function is written as 

G(r, t ;  r ’ ,  t ’ )  = - ( T t [ Y k ( r ,  t ) Y k ( r f ,  t’)]) 

1 G(rt; r’t’) F(rt; r’t’) 

F+(r t ;  r’tf) -G(r’t’; r t )  

where Tt is the time ordering operator. The diagonal elements of the above matrix are 
the standard single-particle Green functions, whereas the off-diagonal elements are 
usually referred to as anomalous Green functions [ l l ]  and are related to the density of 
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Cooper pairs. The matrix Green function of equation (2) obeys the following equation 
of motion: 

DrtG(rt; r't') = 6(r  - r')6(t - t ' ) Q  (3) 
where Q is the unit matrix and the differential operator D,, is given by 

1 i d l d t  - t V 2  + p A(r) 
i slat + t V 2  - p D r t  = [A*(r)  (4) 

where atomic units ( e  = h = m = 1) are used here and subsequently. In equation (4), p 
is the chemical potential which is used as the independent variable instead of the number 
of particles [lo], and A(r) the gap function. 

In cases where the Hamiltonian is time independent and translationally invariant 
and, consequently, the corresponding Green functions depend only on t - t' and r - r' ,  
it is useful to Fourier transform the equation of motion and to solve it for the energy (or 
frequency) and momentum p .  This is the simple model considered in section 3. 

2.2. Surface Green function 

In combining the previous formalism with the SGF method of Garcia-Moliner and Rubio 
[12], we note that the key point is the matrix differential operator in the equation of 
motion (3). In fact we have to carry out the matching procedure for the Green function 
related to that operator instead of the standard Green function appearing in the 
Schrodinger equation [12]. In doing so, we remark on the following points. 

(i) The diagonal elements of the matrix Green function behave as standard Green 
functions and their spatial derivatives are, therefore, discontinuous at the interface [ 121. 

(ii) Instead the anomalous Green functions (off-diagonal terms in (2)) have deriva- 
tives which are continuous at the interface; both features are a consequence of the 
structure of the equation of motion. 

(iii) The discontinuities of the derivatives of the two diagonal elements of the matrix 
Green functions at the interface have opposite signs; this is a consequence of the plus 
sign in front of the Laplacian operator in the lower diagonal element of equation (3), 
which is due to its relation to hole states. 

When these remarks have been taken into account, the SGF method can be straight- 
forwardly generalised to handle Gorkov's Green functions. We shall mention here only 
how the physical magnitudes pertinent to the present study can be derived from this 
formalism. 

Consider a system formed by two media with the bulk matrix Green function 
G,,(r, r';  U ) ,  v = 1,2 ;  we shall discuss only problems described by Hamiltonians inde- 
pendent of time and, therefore, the arguments of the matrix Green function will be r 
and r' and the frequency o. 

The matrix Green function of the whole systems G, is obtained by carrying out a full 
matching of the Green functions of the two media, at the interface; the result is [12,13] 

G, = G,, + G,G;'(G, - G,)G, 'G,  ( 5 )  
where the arguments r,  o have been dropped here and subsequently for clarity. This 
result holds for v = 1 , 2 and for the two spatial arguments rand r' lying on the same side 
of the interface; expressions for the two arguments on different sides of the interface 
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can be found in [13]. The objects denoted by G I  are the surface projections of the 
corresponding three dimensional matrix Green functions G,,. The surface projection of 
the Green function of the whole system is 

G,  = (G?l(-)G; - ’G$+)GC1)-1, (6a) 
The determinant of G;’ is the secular determinant for the interface problem [12]. The 
surface projections of the derivatives of the Green matrices are given by [12, 131 

for the first diagonal element of the Green matrix. The derivates of the second diagonal 
element have opposite signs to those given in equations (6b) and (6c); this is a conse- 
quence of the structure of the differential operator in equation (4). 

Note that this formalism takes full account of the non-locality of the Green function, 
in contrast with the well known quasi-classical approximation [20]. On the other hand, 
the method introduced by Arnold [16], although it also accounts for all the properties 
of the Green functions, shows some technical differences with respect to that presented 
here. 

(i) It is based on the integrodifferential equation which gives the Green function for 
interacting particles in terms of a self-energy [lo], whereas here we obtain the Green 
function from a differential operator [21]; the latter procedure has definite com- 
putational advantages. 

(ii) The first spatial derivatives of the Green function are assumed to be continuous 
at the interface, a procedure not usually followed in standard treatments of Green 
functions [21]. 

The most interesting information in the present study is contained in the transmission 
and reflection matrices. The way in which the transmission and reflection operators can 
be obtained from the SGF method is discussed in [13]; for an incoming state in medium 
v (= 1,2)  the reflection matrix is 

Iw = G;’(G, - G , )  (7)  

U = G;lG,. (8) 

and the transmission matrix is given by 

The SGF method allows calculation of all the physical properties of the system, 
both local and total densities of states, interface states and reflection and transmission 
matrices. In the next section we shall illustrate how the combined formalism proposed 
here works. 

3. The N S  junction 

3.1. Superconductor model and bulk Green functions 

In the simplest version of the microscopic theory of superconductivity, the gap function 
A(r )  is assumed to be a real and positive constant; moreover the crystal potential and 
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the chemical potential are both constants. We shall solve this model in the small-gap 
approximation; this assumption is not far from reality [2] and allows an analytical 
calculation of Green functions. Although the formalism is completely general, we shall 
consider only a one-dimensional model. 

In this model the Fourier transform of the matrix differential operator given in 
equation (4) takes the form 

where 

~ ( p )  = ( A 2  + q i ) ’ I 2  

the frequency w is referred to the superconductor midgap (or the chemical potential 
p ) ,  and qp = $p2 - 1.1. The solutions of det D = 0 are the dispersion relations in the 
superconducting phase (? ~ ( p )  in equation (9)). The small-gap approximation allows 
one to write r],  as 

q p = l  2p 2 -  p pF(p - P F )  (11) 

where pF is the Fermi momentum. 
The matrix Green function is directly given by the spatial Fourier transform of D-’ 

in equation (9); hereafter only retarded Green functions will be considered. Before 
proceeding to give the actual expressions for the Green function we note that, in the 
case of a non-constant Bloch potential, it might be essential to describe hole and electron 
states by means of rather large sets of plane waves. In such a case, the elements in the 
matrix of equation (9) will, in their turn, be matrixes of order equal to the number of 
plane waves included in the calculation [ 151. 

In writing the expressions for the Green function we differentiate two energy regions: 
within or outside the superconductor gap. For energies within the gap (w < A) the 
retarded Green function is given by 

G(z ,  2’; U) - [exp(-apF / z  - Z’I)/pF][(@/(y) 

X C O S ( ~ F / Z - Z ’ I )  * s i n ( p F l z - z ’ / ) ]  (12) 

where 

(13) (y 1 A2 - w2 11/2. 

The two signs in equation (12) correspond to the two diagonal elements in the matrix 
Green function. On the other hand, the anomalous Green function is 

For energies outside the gap ( I (I) 1 > A) ,  we find that 

G ( z , z ’ ; w )  = -[iexp(+iapFsgn(w)lz - Z ‘ I ) / ~ F ] [ ( I U I / ~ ) C O S ( ~ F I Z  - 2’1) 

*is in(pFlz-z’ j ) ] .  (15) 
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Again the two signs correspond to the two diagonal elements. The off-diagonal elements 
are in this case 

F ( z , z ' ;  w )  = (iA/ap;) exp(ia1z - z ' l )  cos(pFlz - 2'1). (16) 

In the case of A = 0 (normal metal) the non-diagonal elements vanish and the Green 
functions are given by 

G0(z ,  z ' ;  w )  = -(i/pF) exp(?ip,lz - ~ ' 1 ) .  (17) 

In deriving equation (17), and as we are interested in energies around the gap, we have 
letp; t w = p ; ;  thissubstitutiondoesnot leadtoany qualitativechangeandisconsistent 
with the small-gap approximation. 

Equations (15)-(17) are the ingredients which combined with our choice for the 
interface potential will allow us to solve the matching problem and to calculate the 
reflection and transmission matrices. This is considered in the next section. 

3.2. Matching at the interface 

We describe the potential at the interface by means of a constant potential barrier (figure 
1) of width d and height p g / 2 ;  choosing this value for the barrier height strongly simplifies 
the expressions derived here. The constant barrier may adequately simulate an insulator 
layer. In the appendix the Green functions and transmission coefficient for the case A = 
0 are derived. As there, we call medium 2 the system formed by the normal metal and 
the potential barrier extended to z = +m (figure 1); medium 1 will be the superconductor 
(at z < 0). For energies outside the gap the surface projection ( z  = 0) of the inverse of 
the superconductor matrix Green function is 

On the other hand, the derivativesof the diagonal elements of the matrix Green functions 
are diagonal and, within the small-gap approximation, 'G!,;) = -IS 2 i.j and 
(-)G:,j = Then, the surface projection of the matrix Green function of the whole 
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system, obtained through the matching of the superconductor matrix Green function 
(equations (12)-(16)) to that of medium 2 (equation (A2)), is given by 

1 -i!!-Fto) [-I - if - A  
o + if* 

= 

where 

f = [(w' - A2)'l2/(2 - to)][2(1 - + ito] 

y = 4[(2 - tO)(W2 - + wto] 
where to is the transmissivity for electrons in a junction formed by two normal metals 
and is given by 1 TO/ (see equation (A5)). Similar expressions are obtained for energies 
inside the gap. 

Then the transmission matrix for an incoming wave in medium 1 (superconductor) 
incident on the surface ( z  = 0) and being transmitted into medium 2 (at z = d )  is given 
by 

U = G;'G,G;'G2(0, d)  (20) 
and the reflection matrix for a wave reflected at z = 0 is 

iw = GY1G, - Q. 

Replacing equations (18) and (19), in combination with (A4) ,  in equations (20) and (21) 
leads to the analytic expressions for the transmission and reflection matrices presented 
below. 

3.3. Results 

In this section we follow the notation used by Blonder et a1 [2] ;  we define the weights of 
electron ( U g )  and hole ( u o )  states at k = 0, for 1 W I  > A ,  as 

U ;  = 1 - 0; = i[l + (1 - A 2 / ~ 2 ) 1 / 2 ] .  (22)  
For I o 1 < A ,  uo and u o  will be complex conjugates; then y in equation (19b) is rewritten 
as 

y = U !  - u $ ( l  - t o ) .  

Then the elements of the transmission matrix can be written in terms of these magnitudes 
as 

Tll = (tA/2/y)[u$ - iu; ( l  - tO)'l2] (23a) 

T12 = ( t ~ / 2 ~ o ~ o / y ) [ l  + i ( l  - (236) 

T22 = TTl T21 = TE (23c) 
On the other hand, the elements of the reflection matrix are 

R l l  = - i( l  - t o )1 /2 /y  

RI2 = (UguO/Y)[to + 2i(l - to)1/2] 

R22 = RTl Rzl = RT2. 
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The reflection coefficients calculated by Blonder et a1 [2] can then be easily obtained 
from the reflection matrix as follows. Let us consider an incident wave of the form 

thus the process of reflection at z = 0 is described by 

where Ia1’ gives the probability of Andreev [22] reflection [2] and lbI2 of ordinary 
reflection; the results for these probabilities are 

la12 = (u;u;/y’)t; (26a) 

lbI2 = ( U ;  - U ; ) ’  (1 - tO)/y2 (26b) 
in complete agreement with previous results [2,6]. The probability of transmission 
through the barrier (between z = 0 and z = d )  for the incoming wave considered above 
can be calculated through 

where 1 c 1 is the probability of ordinary transmission and 1 d 1 ’ that of transmission with 
branch crossing [2]; these magnitudes turn out to be 

Note that equations (26) and (28) actually give probability currents. There is no need to 
introduce the normalised density of states as required in calculations which use the 
matching of wavefunctions [2]; the proper normalisation factors are already included in 
the Green functions. 

This simple calculation illustrates how the formalism proposed here works, and it 
gives support for further applications. 

4. Discussion and final remarks 

In this paper, the SGF method introduced by Garcia-Moliner and Rubio [12] has been 
extended to the case of superconductor junctions. This has been accomplished by 
combining that formalism with the Green function description of the superconducting 
state proposed by Gorkov [9]. The outcome is a formalism which allows direct calculation 
of the Green function of the whole system, from which relevant physical information, 
such as local and total densities of states, localised-state energies, and transmission and 
reflection matrices, can be obtained. To show how the method works, we have chosen 
a simple problem already discussed by other workers [2,6, 161. 

In comparing the present method with that developed by Arnold [16], we note 
that they primarily differ in the way followed to calculate the Green functions. More 
specifically, whereas Arnold calculates the Green functions in the interacting case by 
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solving an integrodifferential equation which includes the electron-electron interaction 
through a self-energy, here we have obtained them from a matrix differential operator 
in which the non-diagonal elements account for the gap function. We think that, within 
our framework, the usual description of the superconducting state in terms of Formal and 
anomalous Green functions, related to single particles and Cooper pairs respectively, i s  
more clearly shown; on the other hand it also has definite computational advantages. 
Other technical differences concern the way in which the matching at the interface is 
carried out. 

This formalism could be applied to many interfacial problems in which, as in the case 
of bulk superconductors, a Green function approach should work efficiently [lo,  111. 
We refer for instance to the effects of temperature and magnetic fields or to spatially 
varying gap functions. 
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Appendix 

Here we derive the well known expression for the transmission coefficient through a 
constant barrier by means of the Green function formalism. The aim is to provide the 
formulae required for solving the matching problem in the N-S junction. The model is 
obtained by letting A = 0 in the model used to describe that junction (see section 3.2); 
here we summarise its main features. 

(i) We consider two jellium metals of identical densities. 
(ii) The barrier height is taken to be equal to p $ / 2  (all energies referred to the 

(iii) As we are interested in energies around the chemical potential, we shall calculate 
chemical potential). 

the transmission coefficient at LL) = 0. 

The Green functions within the barrier are 

Hereafter the two signs correspond to the two diagonal elements of the matrix Green 
function of equation (2) related to electrons and holes. Then, we refer to the system 
formed by the barrier height (extended to z = -E) and the metal on the right of figure 
1 (2 > d ) ,  as medium 2; its Green function is given by 

G 2 ( z , z ’ ; u ) =  &(l/pF){exp(-p,Iz-z’I)?iexp[-pF(/z-dl + l d - z ’ l ) ] } .  (A2) 

This Green function should be matched, at the interface z = 0, to the Green function of 
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medium 1 given in equation (17). The surface projection of the Green function of the 
whole system (1 + 2) then becomes 

(A3) 

On the other hand, the product %y1G2(0, d )  required to calculate the transmission 
coefficient (see equation (20)) is given by 

%s(w) = [-i(1 k i)/pF]{[l ? iexp(-2dpF)]/[l + exp(-2dpF)]}. 

%y'G2(0, d )  = (1 f i)exp(-dpF)/[l * iexp(-2dpF)]. (A4) 

T O  = exp(-dpF)/[l + exp(-2dpF)1 (A51 

Finally, the transmission coefficient is 

which coincides with the expression reported in standard quantum mechanical textbooks 
~ 3 1 .  
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